

Max. : 100 Marks

Answer ALL Questions:

1. Explain with a neat circuit, how an op-amp may be used as a comparator.
2. Derive an expression for the output voltage of an Op-amp based differentiator.
3. With a suitable example distinguish between the LOOP and the LLOPE instructions of $\mu \mathrm{P} 8086$.
4. Develop a program segment for $\mu \mathrm{P} 8086$ to add 05 to all memory locations with effective address 1000 H to 1100 H with resmet to DS. Use LOOP instruction.
5. Develop a program for μ 相 486 to reverse a two digit packed BCD number in AL.
6. Develop a program for μ llith 86 to set all the conditional flags.
7. Write a note on the $\boldsymbol{M} \boldsymbol{N} / \overline{\mathbf{Y}}$ signal of $\mu \mathrm{P} 8086$.
8. Define a macro which retwins through AL the factorialof a number passed through BH .
9. Distinguish between, $\mathrm{DO}\{\ldots$.$\} While() and the While() \{.$.$\} constructsof \mathrm{C}++$.
10. Write a $\mathrm{C}++$ program to input an integer and print the factorial of the number.
Part - B

Answer any FOUR Questions:

11. Sketch a neat circuit diagram of a 10 level parallel A / D convertor and explain it's working in detail
12. Explain in detail all the string primitives of $\mu \mathrm{P} 8086$
13. Develop an ASM program for $\mu \mathrm{P} 8086$ to sort a byte array in ascending order.
14. Develop an ASM program for $\mu \mathrm{P} 8086$ to find the number of lowercase alphabets in a byte array.
15. Develop a single module, two segment ASM program for $\mu \mathrm{P} 8086$ to solve, $a=b!+c!-d$!, by defining a procedure for square root.
16. Write a $\mathrm{C}++$ program toinput a string of alphanumeric characters, toggle the case of alphabets and to print the final string.
Part - C

Answer any FOUR Questions

$(4 \times 12.5=50)$
17. Solve using $\mathrm{Op}-\mathrm{amps}, \mathrm{x}+\mathrm{y}=1.3$ and $2 \mathrm{x}-3 \mathrm{y}=-0.6$
18. DPX and DPY are 32-bit unsigned numbers. Develop an ASM program for $\mu \mathrm{P} 8086$ to find the product and store the result at DPZ. Assume DPX, DPY and DPZ to be word variables.
19. Develop an ASM program for $\mu \mathrm{P} 8086$ to copy an array to an overlapping area.
20. With a block diagram discuss bus buffering and latching in $\mu \mathrm{P} 8086$ operated in maximum mode.
21. Write a note on the DMA controller. With a neat diagram explain the events which take place during DMA transfer using BUS stealing.
(4+8.5)
22. Write a C++ program to input the elements of two 4×4 integer matrices and print the product matrix.

